Role of Linkers between Zinc Fingers in Spacing Recognition by Plant TFIIIA-Type Zinc-Finger Proteins

نویسندگان

  • Setsuko Fukushima
  • Michiteru Yoshida
  • Hiroshi Takatsuji
چکیده

The EPF family of plant TFIIIA-type zinc-finger (ZF) proteins (ZPTs) is characterized by long linkers separating ZF motifs. We previously reported that two-fingered ZPTs bind to two tandem core sites that are separated by several base pairs, each ZF making contact with one core site. Here we report further characterization of DNA-binding activities of ZPTs using four family members, ZPT2-14, ZPT2-7, ZPT2-8, and ZPT2-2, having inter-ZF linkers of different lengths and sequences, to investigate the correlation of the length and/or sequence of the linker with preference for the spacing between core sites in target DNAs. Selected and amplified binding site (SAAB)-imprinting assays and gel mobility shift assays prompted three conclusions. (1) The four ZPTs have common specificity for core binding sites-two AGT(G)/(C)ACTs separated by several nucleotides. (2) The four ZPTs prefer a spacing of 10 bases between the core sites, but each ZPT has its own preference for suboptimal spacing. (3) At a particular spacing, two zinc fingers may bind to the core sites on both strands. The results provide new information about how the diversity in linker length/sequence affects DNA-sequence recognition in this protein family.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of zinc finger linkers in p43 and TFIIIA binding to 5S rRNA and DNA.

Transcription factor IIIA (TFIIIA) and p43 zinc finger protein form distinct complexes with 5S ribosomal RNA in Xenopus oocytes. Additionally, TFIIIA binds the internal promoter of the 5S RNA gene and supports assembly of a transcription initiation complex. Both proteins have nine tandemly repeated zinc fingers with almost identical linker lengths between corresponding fingers, yet p43 has no d...

متن کامل

Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos.

The Xenopus 5S RNA gene-specific transcription factor IIIA (TFIIIA) has nine consecutive Cys2His2 zinc finger motifs. Studies were conducted in vivo to determine the contribution of each of the nine zinc fingers to the activity of TFIIIA in living cells. Nine separate TFIIIA mutants were expressed in Xenopus embryos following microinjection of their respective in vitro-derived mRNAs. Each mutan...

متن کامل

A role in DNA binding for the linker sequences of the first three zinc fingers of TFIIIA.

Zinc fingers of the TFIIIA type are connected by short linker sequences between the structural units. Structural investigations by 2D NMR in solution and by X-ray crystallographic analyses of complexes with DNA point to a passive role for the linkers. We have therefore investigated the influence of the linker sequence on DNA binding using as a model the first three fingers of the protein TFIIIA...

متن کامل

Zinc finger proteins: getting a grip on RNA.

C2H2 (Cys-Cys-His-His motif) zinc finger proteins are members of a large superfamily of nucleic-acid-binding proteins in eukaryotes. On the basis of NMR and X-ray structures, we know that DNA sequence recognition involves a short alpha helix bound to the major groove. Exactly how some zinc finger proteins bind to double-stranded RNA has been a complete mystery for over two decades. This has bee...

متن کامل

Zinc fingers 1 and 7 of yeast TFIIIA are essential for assembly of a functional transcription complex on the 5 S RNA gene

The binding of transcription factor (TF) IIIA to the internal control region of the 5 S RNA gene is the first step in the assembly of a DNA-TFIIIA-TFIIIC- TFIIIB transcription complex, which promotes accurate transcription by RNA polymerase III. With the use of mutations that are predicted to disrupt the folding of a zinc finger, we have examined the roles of zinc fingers 1 through 7 of yeast T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012